Cytokinin-dependent photorespiration and the protection of photosynthesis during water deficit.

نویسندگان

  • Rosa M Rivero
  • Vladimir Shulaev
  • Eduardo Blumwald
چکیده

We investigated the effects of P(SARK)IPT (for Senescence-Associated Receptor KinaseIsopentenyltransferase) expression and cytokinin production on several aspects of photosynthesis in transgenic tobacco (Nicotiana tabacum cv SR1) plants grown under optimal or restricted (30% of optimal) watering regimes. There were no significant differences in stomatal conductance between leaves from wild-type and transgenic P(SARK)-IPT plants grown under optimal or restricted watering. On the other hand, there was a significant reduction in the maximum rate of electron transport as well as the use of triose-phosphates only in wild-type plants during growth under restricted watering, indicating a biochemical control of photosynthesis during growth under water deficit. During water deficit conditions, the transgenic plants displayed an increase in catalase inside peroxisomes, maintained a physical association among chloroplasts, peroxisomes, and mitochondria, and increased the CO(2) compensation point, indicating the cytokinin-mediated occurrence of photorespiration in the transgenic plants. The contribution of photorespiration to the tolerance of transgenic plants to water deficit was also supported by the increase in transcripts coding for enzymes involved in the conversion of glycolate to ribulose-1,5-bisphosphate. Moreover, the increase in transcripts indicated a cytokinin-induced elevation in photorespiration, suggesting the contribution of photorespiration in the protection of photosynthetic processes and its beneficial role during water stress.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhanced cytokinin synthesis in tobacco plants expressing PSARK::IPT prevents the degradation of photosynthetic protein complexes during drought.

To identify genes associated with the cytokinin-induced enhanced drought tolerance, we analyzed the transcriptome of wild-type and transgenic tobacco (Nicotiana tabacum 'SR1') plants expressing P(SARK)::IPT (for senescence-associated receptor kinase::isopentenyltransferase) grown under well-watered and prolonged water deficit conditions using the tomato GeneChip. During water deficit, the expre...

متن کامل

Stress-induced cytokinin synthesis increases drought tolerance through the coordinated regulation of carbon and nitrogen assimilation in rice.

The effects of water deficit on carbon and nitrogen metabolism were investigated in flag leaves of wild-type and transgenic rice (Oryza sativa japonica 'Kitaake') plants expressing ISOPENTENYLTRANSFERASE (IPT; encoding the enzyme that mediates the rate-limiting step in cytokinin synthesis) under the control of P(SARK), a maturation- and stress-induced promoter. While the wild-type plants displa...

متن کامل

Stress-Induced Cytokinin Synthesis Increases Drought Tolerance through the Coordinated Regulation of Carbon and Nitrogen Assimilation in Rice1[C][W][OPEN]

The effects of water deficit on carbon and nitrogen metabolism were investigated in flag leaves of wild-type and transgenic rice (Oryza sativa japonica ‘Kitaake’) plants expressing ISOPENTENYLTRANSFERASE (IPT; encoding the enzyme that mediates the rate-limiting step in cytokinin synthesis) under the control of PSARK, a maturationand stress-induced promoter. While the wildtype plants displayed i...

متن کامل

Post-anthesis Drought Stress Effects on Photosynthesis Rate and Chlorophyll Content of Wheat Genotypes

Water stress is one of the major abiotic stresses in agriculture worldwide. In order to assess photosynthesis response and grain yield of 25 wheat genotypes under water deficit (post-anthesis stress) conditions, a 2-year study (2010-12) was carried out as a split-plot arrangement using randomized complete block design with three replications. The most sensitive gas exchange variable to water de...

متن کامل

Characterization of the adaptive response of grapevine (cv. Tempranillo) to UV-B radiation under water deficit conditions.

This work aims to characterize the physiological response of grapevine (Vitis vinifera L.) cv. Tempranillo to UV-B radiation under water deficit conditions. Grapevine fruit-bearing cuttings were exposed to three levels of supplemental biologically effective UV-B radiation (0, 5.98 and 9.66kJm(-2)day(-1)) and two water regimes (well watered and water deficit), in a factorial design, from fruit-s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Plant physiology

دوره 150 3  شماره 

صفحات  -

تاریخ انتشار 2009